Nonparametric Estimation of Range Value at Risk
نویسندگان
چکیده
Range value at risk (RVaR) is a quantile-based measure with two parameters. As special examples, the (VaR) and expected shortfall (ES), well-known but competing regulatory measures, are both members of RVaR family. The estimation critical issue in financial sector. Several nonparametric estimators described here. We examine these estimators’ accuracy various scenarios using Monte Carlo simulations. Our simulations shed light on how changing p q respect to n affects effectiveness that nonparametric, representing total number samples. Finally, we perform backtesting exercise based Acerbi Szekely’s test.
منابع مشابه
high volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company
در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...
15 صفحه اولconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory
Abstract. We propose nonparametric estimators for conditional value-at-risk (VaR) and expected shortfall (ES) associated with conditional distributions of a series of returns on a financial asset. The return series and the conditioning covariates, which may include lagged returns and other exogenous variables, are assumed to be strong mixing and follow a fully nonparametric conditional location...
متن کاملValue at Risk Estimation
This chapter reviews the recent developments of Value at Risk (VaR) estimation. In this survey, the most available univariate and multivariate methods are presented. The robustness and accuracy of these estimation methods are investigated based on the simulated and real data. In the backtesting procedure, the conditional coverage test (Christoffersen 1998), the dynamic quantile test (Engle and ...
متن کاملDOCUMENT DE TREBALL XREAP2012-19 Nonparametric estimation of Value-at-Risk
A method to estimate an extreme quantile that requires no distributional assumptions is presented. The approach is based on transformed kernel estimation of the cumulative distribution function (cdf). The proposed method consists of a double transformation kernel estimation. We derive optimal bandwidth selection methods that have a direct expression for the smoothing parameter. The bandwidth ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computation (Basel)
سال: 2023
ISSN: ['2079-3197']
DOI: https://doi.org/10.3390/computation11020028